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Design of Linear Double Tapers in
Rectangular Waveguides*
R. C. JOHNSON?

Summary—This paper considers the problem of a taper connect-
ing two uniform waveguides of arbitrary dimensions and propagat-
ing a single mode; an approximate expression for the reflection co-
efficient is derived. The special case of a linear double taper in
rectangular waveguide is examined in detail for propagation in the
TE,, mode. Approximate expressions for the reflection cofficient and
voltage standing wave ratio as functions of the taper dimensions and
free space wavelength are derived and experimentally verified.

INTRODUCTION

APERED sections of waveguides are useful im-
Tpedanee matching devices with wide bandwidth

characteristics. Of particular interest is the linear
taper because of its ease of fabrication.

Several theoretical papers on reflections in nonuni-
form transmission lines are available in the literature.
Matsumaru?® recently analyzed linear and sinusoidal E-
plane tapers in rectangular waveguides, supporting his
theory with experimental evidence. He also pointed
out that linear tapers perform almost as well as expo-
nential tapers and better than shorter hyperbolic tapers.
Quite often, however, it is necessary to design a double
taper, i.e., one that tapers simultaneously in both the
E-plane and H-plane. Therefore, the microwave circuit
engineer needs a method which enables him to design a
linear taper which will match two uniform waveguides
of arbitrary dimensions. This paper provides such a
method for designing linear, single or double tapers in
rectangular waveguide employing propagation in the
TE,; mode. A similar analysis can be applied to other
cases.

RerFLECTION COEFFICIENT OF TAPERED WAVEGUIDE

The exact theory of reflection in waveguides is quite
complicated, particularly when the dimensions of the
discontinuities are not small compared to a wavelength.
For a small step discontinuity between guides of im-
pedances Z, and Z,, the following well-known expression
for the reflection coefficient can be used:?
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Consider a tapered waveguide of length L which con-
nects two uniform waveguides of impedances Z, and Z;
as shown in Fig. 1. Let x be the distance from the end
of the taper where the impedance is Z, and assume that
the impedance in the taper is a smooth function of x
such that Z(0) = Z, and Z(L) = Z,. Partition the interval
0<x<L into N equal subintervals, and replace the
taper with N uniform waveguides, each having a length
of Ax=L/N. Let the impedance of the nth segment be

2, =2Z(%,).
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Fig. 1—Tapered waveguide of length L connecting uniform wave-
guides of impedances Zg and Z1.

The total reflection coefficient is now a function of the
N small reflections from the discontinuities at x;,
%y, + -+, xy. If N is large, the reflection at each dis-
continuity becomes very small. Neglecting multiple
reflections and the excitation of higher order modes,
the IV small reflections can be summed as complex vec-
tors in the following manner;

I' =~ I exp [ — 2yoA%] 4 Tzexp [—2voAx — 2yiAx] 4« «
N~1
~+ I'yexp [—2 Z vax],
me=0
or
N n—1
'~ T, exp[—ZZq/mAx], (2
n=1 m=0

where v, is the propagation constant in the nth segment
and
Zn ™ Zp—1

T, =
Zn + Zn—1
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is the reflection coefficient at the nth discontinuity. Eq.
(2) can be written as

N (3 — 2am1)/Ax nl
I' = Z —(—-——vl)—{—expl:——Z Zymijle.

n=1 Zn + Zn—1 m=0

Letting N approach infinity, the total reflection coeffi-
cient for the taper can be expressed by the integral

I = fOL ZZZI((?) exp [—ZIOxy(T)dr:l dx 3)
I = fOL %<§; In Z> exp [——2 ﬁx'ydr:| dx, (4

where the prime denotes differentiation with respect
to x.

The right side of (4) is a summation of infinitesimal
vectors of slowly varying phase; I' is equal to the result-
ant. In optics, a summation of this type is commonly
called a vibration curve. A graphical representation of
(4) is shown in Fig. 2(a). Integrating (4) by parts, the
reflection coefficient becomes

1 /d 1 /d L
T =—-<~an> ——<-—an> expl:—?.f 'ydx:l
470 dx 0 4’)’1 dx 1 0
+de<1 dlZ) {fod:ld (5)
—— — e — x.
o dx\dy dx )P o

The right side of (5) is the sum of two vectors (terms 1
and 2) and a small vibration curve (term 3) somewhat
similar in form to the vibration curve of (4). A graphical
representation of (5) is shown in Fig. 2(b).

or

(a) (b)

Fig. 2—(a) Graphical representation of (4), (b) Graphical
representation of (5).

Egs. (4) and (5) are expressions for the reflection
coefficient from a tapered section of transmission line or
waveguide. The procedure from here depends upon the
particular type of taper and waveguide under considera-
tion. Eq. (5) vields a particularly simple result for an
exponential taper in which # is not a function of x. In
this case the vibration curve term is zero and the reflec-
tion coefficient becomes

1 YA

= ——1In—[1 —exp (—2vL)],
;3 Zo[ p ]
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which is the same expression as that given by Ragan.?

LINEAR TAPER IN RECTANGULAR WAVEGUIDE

The taper which will be examined in this paper is that
of a linear double taper in rectangular waveguide em-
ploying the TE,, mode. Except for the phase factor, the
integrand in the vibration curve (term 3) of (5) is the
derivative of the product 1/2v times the integrand of
(4). Except where the frequency . of operation is in the
region near cutoff, v and Z are slowly varying functions,
and the vibration curve term in (5) is assumed to be
negligible (See Appendix). This leaves the approxima-

tion,
1 /d
e ()
4ryo \dx i

(L) e[ -2 [ i), @
~ —{—In €X — Yax i,
4’yldx 1 p o o

which 1s identical with the expression derived by Frank*
using approximate solutions of the tapered transmission
line equations. It should be noted that the logarithmic
derivative is discontinuous at the ends of the taper; the
values to be used are those just inside the tapered por-
tion.

Fig. 3 illustrates the general configuration of a linear
taper of length L connecting rectangular waveguides of
impedances Zy and Zi. In the taper section ¢ and/or b
are linear functions of x of the form

a1 — Qg
L
by — by

X

I

a(x) = a0 +

°
Il

X

b= b(x) = by +

1

X.

To interpret (6) in terms of the TE;, mode in rec-
tangular waveguide in free space dielectric, the inte-
grated characteristic impedance defined on a voltage-
current basis® is used. Thus, let

™0 b
2 a1 — (\/2a)*
and
B .27r_ 2 T 67357 g
7~%r—4«?\/—(>\/4), (8)

g

where ¢ and b are the width and height of the guide,
respectively, N is the free space wavelength, and A, is the
guide wavelength. The logarithmic derivative in the
taper is then found to be

3 G. L. Ragan, “Microwave Transmission Circuits,” Rad. Lab.
Series, vol. 9, McGraw-Hill Bock Co., Inc.,, New York, N. Y.,
p. 307; 1948.

¢ N. H. Frank, “Reflections from Sections of Tapered Trans-
mission Lines and Wave Guides,” Rad. Lab. Rep. No. 189; January
6, 1943.

5 Schelkunoff, op. cit., p. 319; Slater, op. cit., pp. 183-185.
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Fig. 3—Linear taper of length L connecting rectangular
waveguides of impedances Zy and Z;.

d 1 l:bl — b _ (a; — ao)/ajl‘ ©

—InZ = —
dx L b 1— (\/2a)

The exponent in (6) can be written in the form

L L dx
—Zf 'ydx - - i47rf —
0 o A

g

(10)

which is recognized as —¢4r times the number of guide
wavelengths in the taper.

Substitution of (8), (9), and (10) into (6) yields the
following expression for reflection coefficient,

i

r= P [K. exp (—idnl) — Ko (11)
where
(by — b0)/bo — [(a1 — a0)/ac]/[1 — (\/2a0)%]

) = - (12)
[1 — (A/2a0)2]12

K, = (by — b0) /b1 — [(a1 — a0)/as]/[1 — (N/2a1)2] (13)
[1 — (A\/2ay)?]'2
L dx 1 L

ZZL ;;:Tfo \/1‘*()\/2&) dx. (14)

Eq. (14) may be evaluated by using a series expansion
of the radical and integrating term by term. The result

e O

L i 2
= 7{1 +§=1(—1) n!(2n — 1)

GG) -G )

(15)
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Within the recommended operating range of standard
waveguides, the first two terms of the series are suffi-
cient; however, for frequencies near cutoff, additional
terms should be used.

The absolute magnitude of the reflection coefficient is

1 TK?+ K2 KoK
Tl = [ LN S P (471'1)]”2. (16)
L/\ 642 3272
Using the relation
1 r

the dominant mode voltage standing wave ratio
(VSWR) can be calculated as a function of taper length
and frequency for a linear taper connecting two speci-
fied waveguides. It is easy to calculate VSWR versus
taper length for a fixed frequency since Ky and K, are
independent of length and / is proportional to length.
To calculate VSWR versus frequency for a fixed taper
length, the three constants must be evaluated for each

frequency; however, the calculations are simple.

LinEar E-PLANE TAPER IN RECTANGULAR GUIDE

In the special case of an E-plane taper an expression
which is simpler than (16) can be derived for the abso-
lute magnitude of the reflection coefficient. Since the
guide width is constant, v is not a function of x; there-

fore,
- f fdw_ L
0 )\g >‘y
Substituting (12), (13), and (18) into (11), the expres-
sion for the reflection coefficient becomes

(18)

r : [b‘_b‘) (—4rL/\,) bl_b‘J] (19)
= exp (—4r — .
8w L/\, by P ) by

The absolute magnitude of the reflection coefficient is
then

1 bo bi\?
el )

87 L/ N, by bo

- 2<—§1> cos (4wL/N\, :|”2, (20)
0
and the VSWR can be calculated from (17).

Eq. (19) is considerably different from the expression
for reflection coefficient derived by Matsumaru;® how-
ever, the calculated VSWR’s agree well for impedance
ratios as great as Z1/Z,=2. With an impedance ratio of
Zy/Zy=2.8 (20) predicts a slightly higher VSWR than
that predicted by Matsumaru as illustrated in Fig. 4.

Eq. (20) was used to calculate the curve of VSWR
vs taper length in Fig. 5 for an impedance ratio of

8 Matsumaru, op. ¢it., Eq. (8).
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Fig. 4—VSWR of linear E-plane tapers. The solid curves were calcu-
lated from (20) and the dashed curve was calculated by Matsu-
maru.
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Fig. 5—VSWR versus taper length calculated from (20). The ex-
perimental points were reported by Matsumaru.

Z1/Zy=2.42. The experimental points were reported by
Matsumaru? and used to verify his theoretical expres-
sion. It is seen that they can also serve to verify (20).

EXPERIMENTAL INVESTIGATION

In the experimental phase, a linear double taper was
electroformed and tested over a wide band of frequen-
cies. It was desirable to have the low end of the test
frequency band near cutoff since the approximation of
(6) does not hold there. A design frequency of 9500
mec was selected and the taper was fabricated to connect
guides with dimensions of 0.900 inchX0.400 inch and
0.750 inch X 0.600 inch; the latter has a cutoff frequency
of 7869 mc. Based on (7) these waveguides have an
impedance ratio of 2.33 at the design frequency. Meas-
uring the VSWR {rom this taper gave an indication of

7 Ibid., Fig. 5.
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Fig. 6—Theoretical VSWR versus taper length for
a linear double taper.
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Fig. 7—VSWR versus frequency for a linear double taper. The
curves were calculated from (16); the value of ! was obtained
from (15) using the first four terms of the series for the solid curve
and the first two terms for the dashed curve. The points are
experimental measurements.

the validity of (6) in the region near cutoff.

The curve of VSWR versus taper length shown in Fig.
6 was calculated using (16). The value of [ was obtained
from (15) using the first four terms of the series. A taper
length of 2.850 inches was chosen, and curves of VSWR
versus frequency were calculated from (16) for two
values of . Both curves are shown in Fig. 7.

The 0.750 inch X 0.600 inch guide was terminated by
a sliding load, and the VSWR was measured at several
frequencies with a standard X-band slotted line at the
0.900 inch X 0.400 inch end of the taper. The experimen-
tal points are also shown in Fig. 7. The agreement be-
tween the measured and theoretical VSWR is satisfac-
tory at 10 per cent above cutoff; it becomes increasingly
better at higher frequencies. Since the low end of the
recommended operating bands for standard wave-
guides generally is 23 to 36 per cent above cutoff, (16)
can be used to predict the VSWR from linear tapers for
most practical applications.
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CONCLUSION

The approximate expression for the absolute magni-
tude of the reflection coefficient in (16) enables the
microwave circuit engineer to design linear, double or
single tapers which will match rectangular waveguides
of arbitrary dimensions employing the TE;y mode. The
VSWR can be predicted as a function of the taper di-
mensions and the free space wavelength. In the experi-
mental phase the measured VSWR agreed satisfactorily
with the calculated value at 10 per cent above cutoff; the
agreement became increasingly better for higher fre-
quencies.

APPENDIX

It is desirable to estimate the resultant of the vibra-
tion curve, term 3 of (5),

de(l dlZ) {fod}d
—|-— —InZ)exp| — x.

0 dx 4’)/ dx P 0 ver

The length T of the curve can be found by neglecting
the phase factor in the integrand;

Lod /N, d
T = f ~<———InZ>dx
0 dx \87 dx
Integrating and substituting from (12) and (13), the
length of the vibration curve is found to be
‘Kl — K,
8w L/\

. (21)

(22)

The magnitude of the error in the approximation (6)
must be less than 7, and under normal circumstances,
it will be considerably smaller than 7 since the vibra-
tion curve is a spiral through 47! radians.

A better estimate of the magnitude of the error in (6)

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

July

Fig. 8—Illustrations of (a) a typical vibration curve, (b) a circular
vibration curve, and (c) a typical vibration curve from a taper
having one end near cutoff.

can be made by assuming a circular vibration curve of
length 7" turning through 4wl radians as illustrated in
Fig. 8(b). Then, the maximum magnitude of the error
is approximately the diameter d of the circular path,
where

T

d:—————:

27l

K, — K,

— . 23
162°L/\ (23)

For most applications, d is very small and (16) can be
used with confidence. One must be cautious, however,
at a frequency close to cutoff. If the width of one end of
the taper is near the cutoff dimension, the phase shift
per unit length will be very small at this end, and a
vibration curve similar to that in Fig. 8(c) will result.
In this case, the magnitude of the error may be larger
than d but must still be smaller than 7.
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