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Design of Linea~ Double Tapers in

Rectangular Waveguides*
R. C. JOHNSON~

Summary—This paper considers the problem of a taper connect-
ing two uniform waveguides of arbitrary dimensions and propagat-
ing a single mode; an approximate expression for the reflection co-
efficient is derived. The special case of a linear double taper in
rectangular waveguide is examined in detail for propagation in the
TEIO mode. Approximate expressions for the reflection coefficient and
voltage standing wave ratio as functions of the taper dimensions and

free space wavelength are derived and experimentally verified.

INTRODUCTION

T

APERED sections of waveguides are useful im-

pedance matching devices with wide bandwidth

characteristics. Of particular interest is the linear

taper because of its ease of fabrication.

Several theoretical papers on reflections in nonuni-

form transmission lines are available in the literature.

Matsumaru’ recently analyzed linear and sinusoidal E-

plane tapers in rectangular waveguides, supporting his

theory with experimental evidence. He also pointed

out that linear tapers perform almost as well as expo-

nential tapers and better than shorter hyperbolic tapers.

Quite often, however, it is necessary to design a double

taper, i.e., one that tapers simultaneously in both the

E-plane and H-plane. Therefore, the microwave circuit

engineer needs a method which enables him to design a

linear taper which will match two uniform waveguides

of arbitrary dimensions. This paper provides such a

method for designing linear, single or double tapers in

rectangular waveguide employing propagation in the

TE1o mode. A similar analysis can be applied to other

cases.

REFLECTION COEFFICIENT OF TAPERED WAVEGUIDE

The exact theory of reflection in waveguides is quite

complicated, particularly when the dimensions of the

discontinuities are not small compared to a wavelength.

For a small step discontinuity between guides of im-

pedances Z. and Z~, the following well-known expression

for the reflection coefficient can be used:2
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Zb – Z.
r=

Zb+Z.”
(1)

Consider a tapered waveguide of length L which con-

nects two uniform waveguides of impedances ZO and Z1

as shown in Fig. 1. Let x be the distance from the end

of the taper where the impedance is 20 and assume that

the impedance in the taper is a smooth function of x

such that Z(0) = ZO and Z(L) = Z1. Partition the interval

O 5x S L into N equal subintervals, and replace the

taper with N uniform waveguides, each having a length

of Ax =L/N. Let the impedance of the nth segment be

Zn = z(%).
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Fig. l—Tapered waveguide of length L connecting uniform wave-

guides of impedances ZO and 21.

The total reflection coefficient is now a function of the

N small reflections from the discontinuities at xl,

X2, ..., xN. If N is large, the reflection at each dis-

continuity becomes very small. Neglecting multiple

reflections and the excitation of higher order modes,

the N small reflections can be summed as complex vec-

tors in the following manner;

[

N– 1
+ rNexp 1–2 ~~mAx ,

m=o

or

r=~r.exp[-2S~.Axl, (2’
72= 1 1- ?n=o -1

where ~. is the propagation constant in the nth segment

and

2. — 2.-1
r. =

2. + z._l
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is the reflection coefficient at the nth discontinuity. Eq.

(2) can be written as

Letting N approach infinity, the total reflection coeffi-

cient for the taper can be expressed by the integral

r= sL-z’(x)
–exp[-ZJ~70d7]dx (3]

, 22(X)

or

‘=fo”+(ilnz)exp[-2f;”dTldx“)
where the prime denotes differentiation with respect

to x.

The right side of (4) is a summation of infinitesimal

vectors of slowly varying phase; r is equal to the result-

ant. In optics, a summation of this type is commonly

called a vibration curve. A graphical representation of

(4) is shown in Fig. 2(a). Integrating (4) by parts, the

reflection coefficient becomes

r‘i(i’nz)o-ixi’nz)lext-2soJdxl

+r:(;:’’z)ex’[-2fo’’dTld”“)
The right side of (5) is the sum of two vectors (terms 1

and 2) and a small vibration curve (term 3) somewhat

similar in form to the vibration curve of (4). A graphical

representation of (5) is shown in Fig. 2(b).

(a) (b)

Fig. 2—(a) Graphical representation of (4), (b) Gmphical
representation of (5).

Eqs. (4) and (5) are expressions for the reflection

coefficient from a tapered section of transmission line or

waveguide. The procedure from here depends upon the

particular type of taper and waveguide under considera-

tion. Eq. (5) yields a particularly simple result for an

exponential taper in which 7 is not a function of x. In

this case the vibration curve term is zero and the reflec-

tion coefficient becomes

r= ~ln ~ [1 – exp (–2YL)],

which is the saline expression as that given by Ragan.3

LINEAR TAPER IN RECTANGULAR WIAVEGUIDII

The taper which will be examined in this paper is that

of a linear double taper in rectangular waveguide em-

ploying the TEIO mode. Except for the phase factor, the

integrand in the vibration curve (term 3) of (5) is the

derivative of the product 1/27 times the iutegrand of

(4). Except where the frequency of operation is in the

region near cutoff, ~ and Z are slowly varying functions,

and the vibration curve term in (5) is assumed to be

negligible (See Appendix). This leaves the approxima-

tion,

()r=: 31n Z
4yo dx iI

- +(:lnz)lexp[-2foL”d“)
which is identical with the expression derived by Frank’{

using approximate solutions of the tapered transmission

line equations. It should be noted that the logarithmic

derivative is discontinuous at the ends clf the taper; the

values to be used are those just inside the tapered por-

tion.

Fig. 3 illustrates the general configuration of a linear

taper of length L connecting rectangular waveguides of

impedances Z. and Z1. In the taper section a anti/or b

are linear functions of x of the form

a=a(z)=aO+WX

x

To interpret (6) in terms of the TEIO mode in rec-

tangular waveguide in free space dielectric, the inte-

grated characteristic impedance defined on a voltage-

current. basis5 is used. Thus, let

b
(7)

aul — (X/2a)2

2T ———
‘i; dl — (x/2(z)2, (8)

where a and b are the width and height of the guide,

respectively, A is the free space wavelength, and AQ is the

guide wavelength. The logarithmic derivative in the

taper is then found to be

3 G. I. Ragan, “Microwave Transmission Circuits, ” Rad. Lab.

Series, vol. 9, McGraw-Hill Book Co., Inc., New York, N. Y.,
p. 307; 1948.

4 N. H. Frank, “Reflections from Sections of Tapered Trans-
mission Lines and Wave Guides, ” Rad. Lab. Rep. No. 189; January
6, 1943.

F Schelkunoff, OP. cit., p. 319; Slater, o@. c&, pp. 183–185.
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z,

Z.
Fig. 3—Linear taper of length L connecting rectangular

waveguides of impedances 20 and 21.

1 bl – b, (al – aO)/a

[
~ln Z=z —

b– 11–(A/2a)2 “
(9)

The exponent in (6) can be written in the form

f

L

–2 ydx = –
o sL

i47r
o

(lo)

which is recognized as — i47r times the number of guide

wavelengths in the taper.

Substitution of (8), (9), and (10) into (6) yields the

following expression for reflection coefficient,

r= & [Kl exp (–i47rl) – KO~

where

~. = (bl – bJ/bO – [(al – aO)/ao]/[l – (A/2ao)’]

[1 – (k/2uo)’]’/2

(b, – bJ/b~ – [(al – aJ/a~]/[1 – (A/2aJ’j
K,=—

[1 – (i/2al)2]’f’

(11)

(12)

(13)

(14)

Eq. (14) may be evaluated by using a series expansion

of the radical and integrating term by term. The result

is

{

W(3 “ “ “ (+3l=; 1+~(–1)”—
%=1 n!(z~– 1)

“(2a,:2aJ[(+)2n-’- (:Y11}l} ‘1’)

Within the recommended operating range of standard

waveguides, the first two terms of the series are suffi-

cient; however, for frequencies near cutoff, additional

terms should be used.

The absolute magnitude of the reflection coefficient is

Kc?+ K,’ KOKI
lrl=~[ 1—COS (4?ri) ‘/2. (16)

64irz – 32r2

Using the relation

(17)

the dominant mode voltage standing wave ratio

(VSWR) can be calculated as a function of taper length

and frequency for a linear taper connecting two speci-

fied waveguides. It is easy to calculate VSWR versus

taper length for a fixed frequency since KO and K1 are

independent of length and 1 is proportional to length.

To calculate VSWR versus frequency for a fixed taper

length, the three constants must be evaluated for each

frequency; however, the calculations are simple.
?

LINEAR E-PLANE TAPER IN RECTANGULAR GUIDE

In the special case of an E-plane taper an expression

which is simpler than (16) can be derived for the abso-

lute magnitude of the reflection coefficient. Since the

guide width is constant, ~ is not a function of ~; there-

fore,

s‘dx L
1=

, <=K”
(18)

Substituting (12), (13), and (18) into (1 1), the expres-

sion for the reflection coefficient becomes

“[bl – bo
r=~—

bl – b.

87rL/Ao bl
exp (– 4rL/&) – 1— . (19)

bo

The absolute magnitude of the reflection coefficient is

then

lrl=& 1[ ()
bl 2

1–: 1+ ~

() 1–2 $ COS (47rL/Ag 112, (20)

and the VSWR can be calculated from (17).

Eq. (19) is considerably different from the expression

for reflection coefficient derived by Matsumaru ;G how-

ever, the calculated VSWR’S agree well for impedance

ratios as great as Z1/ZO = 2. With an impedance ratio of

Z1/ZO = 2.8 (20) predicts a slightly higher VSWR than

that predicted by Matsumaru as illustrated in Fig. 4.

Eq. (2o) was used to calculate the curve of VSWR

vs taper length in Fig. 5 for an impedance ratio of

‘ Matsumaru, op. cit., Eq. (8).
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Fig. 4—VSWR of linear E-plane tapers. The solid curves were calcu-
lated from (20) and the dashed curve was calculated by Matsu-
maru.
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Fig. 5—VSWR versus taper length calculated from (20). The ex-
perimental points were reported by Matsumaru.

ZI/Zo = 2.42. The experimental points were reported by

Matsumaru7 and used to verify his theoretical expres-

sion. It is seen that they can also serve to verify (20).

EXPERIMENTAL INVESTIGATION

In the experimental phase, a linear double taper was

electroformed and tested over a wide band of frequen-

cies. It was desirable to have the low end of the test

frequency band near cutoff since the approximation of

(6) does not hold there. A design frequency of 9500

lnc was selected and the taper was fabricated to connect

guides with dimensions of 0.900 inch xO.400 inch and

0.750 inch X 0.600 inch; the latter has a cutoff frequency

of 7869 mc. Based on (7) these waveguides have an

impedance ratio of 2.33 at the design frequency. Meas-

uring the VSWR from this taper gave an indication of

~ Ibid., Fig. 5.
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Fig. 6—Theoretical VSWR versus taper length for
a linear double taper.
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Fig. 7—VSWR versus frequency for a linear double taper. The
curves were calculated from (16); the value of 1 was obtained
from (15) using the first four terms of the series for the solid curve
and the first two terms for the dashed curve. The points are
experimental measurements.

the validity of (6) in the region near cutoff.

The curve of VSWR versus taper length shown in Fig.

6 was calculated usi%g (16). The value of 1 was obtained

from (15) using the first four terms of the series. A taper

length of 2.850 inches was chosen, and curves of VSWR

versus frequency were calculated from (16) for two

values of 1. Both curves are shown in Fig. 7.

The 0.750 inch X 0.600 inch guide was terminated by

a sliding load, and the VSWR was measured at several

frequencies with a standard X-band slotted line at the

0.900 inch X 0.400 inch end of the taper. The experimen-

tal points are also shown in Fig. 7. The agreement be-

tween the measured and theoretical VSIVR is satisfac-

tory at 10 per cent above cutoff; it becomes increasingly

better at higher frequencies. Since the low end of the

recommended operating bands for standard wave-

guides generally is 23 to 36 per cent above cutoff, (16)

can be used to predict the VSWR from linear tapers for

most practical applications.
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CONCLUSION

The approximate expression for the absolute magni-

tude of the reflection coefficient in (16) enables the

microwave circuit engineer to design linear, double or

single tapers which will match rectangular waveguides

of arbitrary dimensions employing the TE1o Imode. The

VSWR can be predicted as a function of the taper di-

mensions and the free space wavelength. In the experi-

mental phase the measured VSWR agreed satisfactorily

with the calculated value at 10 per cent above cutoff; the

agreement became increasingly better for higher fre- Fig. 8—Illustrations of (a) a typi~al vibration curve, (b) a circular

quencies.
vibration curve, and (c) a t yplcal vibration curve from a taper
having one end near cutoff.

APPENDIX can be made by assuming a circular vibration curve of

It is desirable to estimate the resultant of the vibra- length T turning through 47rl radians as illustrated in

tion curve, term 3 of (5), Fig. 8(b). Then, the maximum magnitude of the error

~’ ~(~~lnz)exp[-2J~~d,]ds.

is approximately the diameter d of the circular path,

where

K1 – Ko

The length T of the curve can be found by neglecting
d=~=

161r~lL/A -
(23)

the phase factor in the integrand;

Integrating and substituting from (12) and

length of the vibration curve is found to be

KI – Ko
T=

81rL/A “

The magnitude of the error in the approxim

For most applications, d is very small and (16) can be

(21)
used with confidence. One must be cautious, however,

at a frequency close to cutoff. If the width of one end of

the taper is near the cutoff dimension, the phase shift
13), the per unit length will be very small at this end, and a

vibration curve similar to that in Fig. 8(c) will result.

In this case, the magnitude of the error may be larger

(22) than d but must still be smaller than T.

tion (6)
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